3. If n(AꓵB)= 36, n(A – B)= 25, n(B – A)= 20, Then find n(AUB), n(A) and n(B) - Advance Math Class 10 - Exercise: 1.1

If Advance Math Class 10 -  Exercise: 1.1, 3. If n(AꓵB)= 36, n(A – B)= 25, n(B – A)= 20, Then find n(AUB), n(A) and  n(B) n(A – B)= 25, n(B – A)= 20, Then find n(AUB), n(A) and  n(B).

Solution:

We know that,

n(AUB)= n(A – B) + n(B – A) + n(AꓵB)
= 25 + 20 + 36
= 81

n(A)= n(A – B) + n(AꓵB)
= 25 + 36
= 61

n(B)= n(B – A) + n(AꓵB)
= 20 + 36
= 56


  Exercise: 1.1  










Post a Comment

Follow Us For Future Updates.

Previous Post Next Post