2. Let A and B be two sets and U be their Universal set. If n(U)= 120, n(A)= 42, n(B)= 50 and n(AꓵB)= 21 then find, (i) n (AUB), n(A – B), n(B – A) and n(AˊꓵBˊ) (ii) n(Bˊ), n(Aˊ), n(AꓴB)ˊ (iii) n(PUQ) and n(PꓵQ) where P= A – B and Q= AꓵB (iv) How many elements are there in the set U – (AUB) - Advance Math Class 10- Exercise: 1.1

Let A and B be two sets and U be their Universal set. If n(U)= 120, n(A)= 42, n(B)= 50 and n(AꓵB)= 21 then find,  

(i) n (AUB), n(A – B), n(B – A) and n(AˊꓵBˊ)  

(ii) n(Bˊ), n(Aˊ),  n(AꓴB)ˊ  

(iii) n(PUQ) and n(PꓵQ) where P= A – B and Q= AꓵB  (iv) How many elements are there in the set U – (AUB)

Given,
2. Let A and B be two sets and U be their Universal set. If n(U)= 120, n(A)= 42, n(B)= 50 and n(AꓵB)= 21 then find,  (i) n (AUB), n(A – B), n(B – A) and n(AˊꓵBˊ)  (ii) n(Bˊ), n(Aˊ),  n(AꓴB)ˊ  (iii) n(PUQ) and n(PꓵQ) where P= A – B and Q= AꓵB  (iv) How many elements are there in the set U – (AUB) - Advance Math Class 10- Exercise: 1.1
n(A)= 42
n(B)= 50
n(AꓵB)= 21

i) We know that

n (AUB)= n(A) + n(B) – n(AꓵB)
              =42+50 – 21
              =71

Again, 
n (A ̶ B)= n(A)  ̶  n(AꓵB)
             = 42 – 21
             = 21

n (B ̶ A)= n(B)  ̶  n(AꓵB)
             = 50 – 21
             = 29

And 
n(AˊꓵBˊ)= n(AꓴB)ˊ
                = n(U) – n(AUB)
                = 120 – 71
                = 49

(ii) n(Bˊ) = n(U) – n(B)
                = 120 – 50
                = 70

n (Aˊ)= n(U) – n(A)
          = 120 – 42
          = 78

And 
n(AUB)ˊ= n(U) – n(AUB)
              = 120 – 71
              = 49

(iii) n(PUQ)= n [(A  ̶   B) U (AꓵB)]
                   = n[(AꓵBˊ) U (AꓵB)]
                   = n[Aꓵ(BˊUB)] (distribution law)
                   = n [AꓵU]
                   = n(A)
                   = 42

And 
n(PꓵQ)= n [(A  ̶  B) ꓵ (AꓵB)]
            = n[(AꓵBˊ) ꓵ (AꓵB)]
            = n[ A ꓵ (BꓵBˊ)]
            = n [A ꓵ ф]
            = n(ф)
            = 0

(iv) n[U – (AUB)] = n(U) – n(AUB)
                              = 120 – 71
                              = 49


  Exercise: 1.1  










Previous Post Next Post