A chord of a circle of radius 12 cm subtends an angle of 120° at the centre. Find the area of the corresponding segment of the circle ? (Use π = 3.14 and √ 3 = 1.73)

The Biotic World is the best free Educational Website for Students. The Biotic World Provides NCERT Solution PDFCBSE Notes PDFNCERT Books PDF for class 8, 9, 10, 11, 12. The Biotic World also provides GU TDC Syllabus, Previous Years Question Papers, TDC notes on different topics of Physics, Chemistry, Mathematics, Zoology and Botany any many more.

So, Follow us to get tuned with latest updates.

Solution:
⇨ Given
    r = 12 cm
    θ = 120°
⇨ Area Of Sector
⇨ Area Of Sector

⇨ In △AOC
   ∠AOC = 120/2 = 60°    (As θ = 120°)
    ∴ sin 60° = p/h
⇨ √ 3/2 = AC/AO
⇨ √ 3/2 = AC/12
⇨ AC = √ 3 x 12/2
⇨ AC = 6√ 3 cm

∵ AB = 2AC    (As C is the mid point)

⇨ Again
⇨ cos 60° = b/h
⇨ 1/2 = b/h
⇨ 1/2 = OC/AO
⇨ 1/2 = OC/12
⇨ OC = 12/2
⇨ OC = 6 cm

⇨ Now Area of △AOB
⇨ Now Area of △AOB

⇨ Area of Minor segment 
Area Of Sector - Area of △AOB
= (150.72 - 62.28) 
= 88.44 


  Exercise 12.2  
















Previous Post Next Post