Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4

Solution:

We have to show
        Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4

Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4

Adding 2ab On both side

Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4 Proved
Previous Post Next Post