If a > 0, b > 0, a > b then \frac{1}{a}<\frac{1}{b}

Solution:

⇨ We have e to show
        If a > 0, b > 0, a > b then \frac{1}{a}<\frac{1}{b}
⇨Given that
If a > 0, b > 0, a > b then \frac{1}{a}<\frac{1}{b}

If a > 0, b > 0, a > b then \frac{1}{a}<\frac{1}{b}
If a > 0, b > 0, a > b then \frac{1}{a}<\frac{1}{b}
⇨Again If a > 0, b > 0, a > b then \frac{1}{a}<\frac{1}{b}
If a > 0, b > 0, a > b then \frac{1}{a}<\frac{1}{b}
If a > 0, b > 0, a > b then \frac{1}{a}<\frac{1}{b}
If a > 0, b > 0, a > b then \frac{1}{a}<\frac{1}{b} Proved 
Previous Post Next Post