Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9

Solution:

We have to show that
        Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9
⇨If a, b, c>0 then Arithmetic Mean Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9
⇨If a, b, c>0 then Geometric Mean Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9
⇨Now Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9

Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9
Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9

⇨Now (i) x (ii)

Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9
Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9
Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9
Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9 Proved
Previous Post Next Post