Solution:
⇨We have to show that
⇨If a, b, c>0 then Arithmetic Mean ![Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9 Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9](https://latex.codecogs.com/gif.latex?=&space;\frac{a+b+c}{3})
⇨If a, b, c>0 then Geometric Mean![Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9 Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9](https://latex.codecogs.com/gif.latex?=&space;\sqrt{abc})
⇨Now![Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9 Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9](https://latex.codecogs.com/gif.latex?A.M\geq&space;G.M)
![Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9 Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9](https://latex.codecogs.com/gif.latex?\therefore&space;\frac{a+b+c}{3}\geq&space;\sqrt[3]{abc}.......(i))
![Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9 Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9](https://latex.codecogs.com/gif.latex?\therefore&space;\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{3}\geq&space;\sqrt[3]{\frac{1}{abc}}.......(ii))
⇨If a, b, c>0 then Geometric Mean
⇨Now
⇨Now (i) x (ii)
Tags:
Advance Math Class 8
Our website uses cookies to improve your experience. Learn more
Ok