Inequality And Equations-Chapter 2-Class 8- Advance Math

The Biotic World is the best free Educational Website for Students. The Biotic World Provides NCERT Solution PDFCBSE Notes PDFNCERT Books PDF for class 8, 9, 10, 11, 12. The Biotic World also provides GU TDC SyllabusPrevious Years Question PapersTDC notes on different topics of Physics, Chemistry, Mathematics, Zoology and Botany any many more. So, Follow us to get tuned with latest updates.


Exercise 2 (a)

1. (i) Or  

Solution:

⇨Given
Show that \large a+\frac{1}{a}>2 or  \frac{a+1}{a}>2
Show that \large a+\frac{1}{a}>2 or  \frac{a+1}{a}>2
Show that \large a+\frac{1}{a}>2 or  \frac{a+1}{a}>2
Show that \large a+\frac{1}{a}>2 or  \frac{a+1}{a}>2
Show that \large a+\frac{1}{a}>2 or  \frac{a+1}{a}>2
Show that \large a+\frac{1}{a}>2 or  \frac{a+1}{a}>2
Show that \large a+\frac{1}{a}>2 or  \frac{a+1}{a}>2 Proved

(ii) If a > 0, b > 0, a > b then

Solution:

⇨Given that
If a > 0, b > 0, a > b then \frac{1}{a}<\frac{1}{b}

If a > 0, b > 0, a > b then \frac{1}{a}<\frac{1}{b}
If a > 0, b > 0, a > b then \frac{1}{a}<\frac{1}{b}
⇨Again If a > 0, b > 0, a > b then \frac{1}{a}<\frac{1}{b}
If a > 0, b > 0, a > b then \frac{1}{a}<\frac{1}{b}
If a > 0, b > 0, a > b then \frac{1}{a}<\frac{1}{b}
If a > 0, b > 0, a > b then \frac{1}{a}<\frac{1}{b} Proved 

2. (i)

Solution:

Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4

Adding 2ab On both side

Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4
Show that \left ( a+b \right )\left ( \frac{1}{a}+ \frac{1}{b} \right )>4 Proved

(ii).

Solution:
⇨If a, b, c>0 then Arithmetic Mean Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9
⇨If a, b, c>0 then Geometric Mean Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9
⇨Now Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9

Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9
Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9

⇨Now (i) x (ii)

Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9
Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9
Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9
Show that \left ( a+b+c \right )\left ( \frac{1}{a}+ \frac{1}{b}+\frac{1}{c} \right )\geq 9 Proved

3. 
Show that a^2+b^2>2ab

Solution:        

We Know
        Show that a^2+b^2>2ab
Show that a^2+b^2>2ab
Show that a^2+b^2>2ab Proved  

Q.4. If and than  
Solution:
Given








Proved 

Q.6. (i) If a > 1, b > 1 then (a+1)(b+1)>2(ab+1)
Solution:
Given
.........(i)
Similarly
........(ii)
Adding equation (i)+(ii)
.......(iii)
Again
. ..................(iv)
Dividing equation (iii) by (iv)


Proved

(ii) If a, b, c R prove that
Solution:
a, b, c > 0
We Know .........(i)
...........(ii)
............(iii)
Multiplying equation (i)(ii)(ii)



 Proved

Q.7. (i) 

Solution:
We know 




Multiplying (a + b) on both side
   
 Proved

(ii)
 if a < b.
Solution:




 
  

Therefore

It means

Hence
 Proved

Q.8.If a > b > 0 and c = 0 Then prove that
(i) 

Solution:
Given
a > 0 , c > 0 = a + c < a .....(i)
b > 0 , c > 0 = b + c < b .....(i)
Dividing Equation (i) by (ii) 
 Proved

(ii) 

Solution:
We know 




Multiplying (a + b) on both side
 
 Proved.

(iii) 

Solution:
We Know




Multiplying (a + b) on both side

 Proved
(iv)
Q.9. If a, b, c, d are positive and 
 then prove that 
Solution:
Given

Adding 
 On both side
Therefore 





 .........(i)
Similarly 

Adding 
 on both side




 .........(ii)
From equation (i) and (ii)
 Proved

Q.10.If a, b, c are positive then show that
(i) 

Solution:
Given a , b , c > 0
We Know 
 



Similarly


Adding equation (i)+(ii)+(iii)








 Proved

(ii)    
Solution:
Given a , b , c > 0
We Know


Multiplying By c on both side

Similarly


Adding equation (i)+(ii)+(iii)






Proved

(iii)
Solution:
Given a , b , c > 0
We Know






Similarly


Adding equation (i)+(ii)+(iii)



Proved

Q. 10. If a > 0 , a

Previous Post Next Post